Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Defensive effects of extrafloral nectaries in quaking aspen differ with scale.

Identifieur interne : 002F35 ( Main/Exploration ); précédent : 002F34; suivant : 002F36

Defensive effects of extrafloral nectaries in quaking aspen differ with scale.

Auteurs : Brent Mortensen [États-Unis] ; Diane Wagner ; Patricia Doak

Source :

RBID : pubmed:20931234

Descripteurs français

English descriptors

Abstract

The effects of plant defenses on herbivory can differ among spatial scales. This may be particularly common with indirect defenses, such as extrafloral nectaries (EFNs), that attract predatory arthropods and are dependent on predator distribution, abundance, and behavior. We tested the defensive effects of EFNs in quaking aspen (Populus tremuloides Michx.) against damage by a specialist herbivore, the aspen leaf miner (Phyllocnistis populiella Cham.), at the scale of individual leaves and entire ramets (i.e., stems). Experiments excluding crawling arthropods revealed that the effects of aspen EFNs differed at the leaf and ramet scales. Crawling predators caused similar reductions in the percent leaf area mined on individual leaves with and without EFNs. However, the extent to which crawling predators increased leaf miner mortality and, consequently, reduced mining damage increased with EFN expression at the ramet scale. Thus, aspen EFNs provided a diffuse defense, reducing damage to leaves across a ramet regardless of leaf-scale EFN expression. We detected lower leaf miner damage and survival unassociated with crawling predators on EFN-bearing leaves, suggesting that direct defenses (e.g., chemical defenses) were stronger on leaves with than without EFNs. Greater direct defenses on EFN-bearing leaves may reduce the probability of losing these leaves and thus weakening ramet-scale EFN defense. Aspen growth was not related to EFN expression or the presence of crawling predators over the course of a single season. Different effects of aspen EFNs at the leaf and ramet scales suggest that future studies may benefit from examining indirect defenses simultaneously at multiple scales.

DOI: 10.1007/s00442-010-1799-6
PubMed: 20931234


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Defensive effects of extrafloral nectaries in quaking aspen differ with scale.</title>
<author>
<name sortKey="Mortensen, Brent" sort="Mortensen, Brent" uniqKey="Mortensen B" first="Brent" last="Mortensen">Brent Mortensen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775-7000</wicri:regionArea>
<placeName>
<region type="state">Alaska</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wagner, Diane" sort="Wagner, Diane" uniqKey="Wagner D" first="Diane" last="Wagner">Diane Wagner</name>
</author>
<author>
<name sortKey="Doak, Patricia" sort="Doak, Patricia" uniqKey="Doak P" first="Patricia" last="Doak">Patricia Doak</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:20931234</idno>
<idno type="pmid">20931234</idno>
<idno type="doi">10.1007/s00442-010-1799-6</idno>
<idno type="wicri:Area/Main/Corpus">003046</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003046</idno>
<idno type="wicri:Area/Main/Curation">003046</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003046</idno>
<idno type="wicri:Area/Main/Exploration">003046</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Defensive effects of extrafloral nectaries in quaking aspen differ with scale.</title>
<author>
<name sortKey="Mortensen, Brent" sort="Mortensen, Brent" uniqKey="Mortensen B" first="Brent" last="Mortensen">Brent Mortensen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775-7000</wicri:regionArea>
<placeName>
<region type="state">Alaska</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wagner, Diane" sort="Wagner, Diane" uniqKey="Wagner D" first="Diane" last="Wagner">Diane Wagner</name>
</author>
<author>
<name sortKey="Doak, Patricia" sort="Doak, Patricia" uniqKey="Doak P" first="Patricia" last="Doak">Patricia Doak</name>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Ants (physiology)</term>
<term>Feeding Behavior (physiology)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (physiology)</term>
<term>Populus (growth & development)</term>
<term>Populus (physiology)</term>
<term>Seasons (MeSH)</term>
<term>Survival Analysis (MeSH)</term>
<term>Time Factors (MeSH)</term>
<term>Weights and Measures (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de survie (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Comportement alimentaire (physiologie)</term>
<term>Facteurs temps (MeSH)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Fourmis (physiologie)</term>
<term>Poids et mesures (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (physiologie)</term>
<term>Saisons (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Comportement alimentaire</term>
<term>Feuilles de plante</term>
<term>Fourmis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Ants</term>
<term>Feeding Behavior</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Seasons</term>
<term>Survival Analysis</term>
<term>Time Factors</term>
<term>Weights and Measures</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de survie</term>
<term>Animaux</term>
<term>Facteurs temps</term>
<term>Poids et mesures</term>
<term>Saisons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effects of plant defenses on herbivory can differ among spatial scales. This may be particularly common with indirect defenses, such as extrafloral nectaries (EFNs), that attract predatory arthropods and are dependent on predator distribution, abundance, and behavior. We tested the defensive effects of EFNs in quaking aspen (Populus tremuloides Michx.) against damage by a specialist herbivore, the aspen leaf miner (Phyllocnistis populiella Cham.), at the scale of individual leaves and entire ramets (i.e., stems). Experiments excluding crawling arthropods revealed that the effects of aspen EFNs differed at the leaf and ramet scales. Crawling predators caused similar reductions in the percent leaf area mined on individual leaves with and without EFNs. However, the extent to which crawling predators increased leaf miner mortality and, consequently, reduced mining damage increased with EFN expression at the ramet scale. Thus, aspen EFNs provided a diffuse defense, reducing damage to leaves across a ramet regardless of leaf-scale EFN expression. We detected lower leaf miner damage and survival unassociated with crawling predators on EFN-bearing leaves, suggesting that direct defenses (e.g., chemical defenses) were stronger on leaves with than without EFNs. Greater direct defenses on EFN-bearing leaves may reduce the probability of losing these leaves and thus weakening ramet-scale EFN defense. Aspen growth was not related to EFN expression or the presence of crawling predators over the course of a single season. Different effects of aspen EFNs at the leaf and ramet scales suggest that future studies may benefit from examining indirect defenses simultaneously at multiple scales.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20931234</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>07</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>165</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2011</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Defensive effects of extrafloral nectaries in quaking aspen differ with scale.</ArticleTitle>
<Pagination>
<MedlinePgn>983-93</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-010-1799-6</ELocationID>
<Abstract>
<AbstractText>The effects of plant defenses on herbivory can differ among spatial scales. This may be particularly common with indirect defenses, such as extrafloral nectaries (EFNs), that attract predatory arthropods and are dependent on predator distribution, abundance, and behavior. We tested the defensive effects of EFNs in quaking aspen (Populus tremuloides Michx.) against damage by a specialist herbivore, the aspen leaf miner (Phyllocnistis populiella Cham.), at the scale of individual leaves and entire ramets (i.e., stems). Experiments excluding crawling arthropods revealed that the effects of aspen EFNs differed at the leaf and ramet scales. Crawling predators caused similar reductions in the percent leaf area mined on individual leaves with and without EFNs. However, the extent to which crawling predators increased leaf miner mortality and, consequently, reduced mining damage increased with EFN expression at the ramet scale. Thus, aspen EFNs provided a diffuse defense, reducing damage to leaves across a ramet regardless of leaf-scale EFN expression. We detected lower leaf miner damage and survival unassociated with crawling predators on EFN-bearing leaves, suggesting that direct defenses (e.g., chemical defenses) were stronger on leaves with than without EFNs. Greater direct defenses on EFN-bearing leaves may reduce the probability of losing these leaves and thus weakening ramet-scale EFN defense. Aspen growth was not related to EFN expression or the presence of crawling predators over the course of a single season. Different effects of aspen EFNs at the leaf and ramet scales suggest that future studies may benefit from examining indirect defenses simultaneously at multiple scales.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mortensen</LastName>
<ForeName>Brent</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wagner</LastName>
<ForeName>Diane</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Doak</LastName>
<ForeName>Patricia</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>10</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001000" MajorTopicYN="N">Ants</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005247" MajorTopicYN="N">Feeding Behavior</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016019" MajorTopicYN="N">Survival Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014894" MajorTopicYN="N">Weights and Measures</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>04</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>09</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20931234</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-010-1799-6</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Bot. 2004 Jun;91(6):871-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2006 Mar;93(3):491-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21646208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(1):41-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18086230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2004 Dec 7;271(1556):2481-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15590599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2001 Nov;129(3):367-375</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2008 Aug;157(2):259-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18523809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 May;89(5):1364-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18543629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 Dec;100(6):1337-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17951361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2010 Apr;97(4):601-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2003 Aug;136(3):484-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12802671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2005 Aug;31(8):1711-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16222804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometrics. 1997 Sep;53(3):983-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9333350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Sep;90(9):2384-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19769117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2009 Jul;174(1):134-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19456265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2003 Jan;134(2):210-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12647162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Apr 22;105(16):6196-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2004 Dec;58(12):2657-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15696745</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Alaska</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Doak, Patricia" sort="Doak, Patricia" uniqKey="Doak P" first="Patricia" last="Doak">Patricia Doak</name>
<name sortKey="Wagner, Diane" sort="Wagner, Diane" uniqKey="Wagner D" first="Diane" last="Wagner">Diane Wagner</name>
</noCountry>
<country name="États-Unis">
<region name="Alaska">
<name sortKey="Mortensen, Brent" sort="Mortensen, Brent" uniqKey="Mortensen B" first="Brent" last="Mortensen">Brent Mortensen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F35 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002F35 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20931234
   |texte=   Defensive effects of extrafloral nectaries in quaking aspen differ with scale.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20931234" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020